2.2.2.9 Физика

Физика. 7 класс

1. Планируемые результаты освоения учебного предмета «Физика». 7 класс

Личностные:

- осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки;
- вырабатывать свои собственные ответы на основные жизненные вопросы, которые ставит личный жизненный опыт;
- учиться признавать противоречивость и незавершённость своих взглядов на мир, возможность их изменения;
- учиться использовать свои взгляды на мир для объяснения различных ситуаций, решения возникающих проблем и извлечения жизненных уроков;
- осознавать свои интересы, находить и изучать в учебниках по разным предметам материал (из максимума), имеющий отношение к своим интересам;
- использовать свои интересы для выбора индивидуальной образовательной траектории, потенциальной будущей профессии и соответствующего профильного образования.
- приобретать опыт участия в делах, приносящих пользу людям.
- оценивать жизненные ситуации с точки зрения безопасного образа жизни и сохранения здоровья.
- учиться выбирать стиль поведения, привычки, обеспечивающие безопасный образ жизни и сохранение своего здоровья, а также близких людей и окружающих.
- оценивать экологический риск взаимоотношений человека и природы.
- формировать экологическое мышление: умение оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды.

Метапредметные:

- самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности.
- выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных средств и искать самостоятельно средства достижения цели.
- составлять (индивидуально или в группе) план решения проблемы.
- работая по предложенному и (или) самостоятельно составленному плану, использовать наряду с основными средствами и дополнительные: справочная литература, физические приборы, компьютер.
- планировать свою индивидуальную образовательную траекторию.
- работать по самостоятельно составленному плану, сверяясь с ним и целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства.
- самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха.
- уметь оценивать степень успешности своей индивидуальной образовательной деятельности.
- давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

Предметные:

Ученик научится:

- соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
- понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;
- распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;
- ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.
- понимать роль эксперимента в получении научной информации;
- проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура, атмосферное давление, влажность воздуха, при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений.
- проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;
- анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;
- понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни;
- использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы Интернет.
- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, равномерное и равноускоренное прямолинейное движение, относительность механического движения, свободное падение тел, равномерное движение по окружности, инерция, взаимодействие тел, реактивное движение, передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твердых тел;
- описывать изученные свойства тел и механические явления, используя физические величины: путь, перемещение, скорость, ускорение, период обращения, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, сила трения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, механические явления и процессы, используя физические законы: закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;

- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчета;
- решать задачи, используя физические законы (закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, коэффициент трения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Ученик получит возможность научиться:

- осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;
- самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;
- воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;
- создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.
- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах; примеры использования возобновляемых источников энергии; экологических последствий исследования космического пространств;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, Архимеда и др.);
 - находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

2. Содержание учебного предмета «Физика». 7 класс

1. Физика и мир, в котором мы живем.

Что изучает физика. Некоторые физические термины. Наблюдение и опыт. Физические приборы. Физические величины и их измерение. Международная система единиц. Измерения и точность измерений. Погрешности измерений. Мир четырех измерений. Пространство и время.

2. Строение вещества.

Строение вещества. Молекулы и атомы. Броуновское движение. Диффузия. Взаимодействие частиц вещества. Смачивание и капиллярность. Модели строения газов, жидкостей и твердых тел и объяснение свойств вещества на основе этих моделей.

3. Движение, взаимодействие, масса.

Механическое движение. Относительность движения. Тело отсчета. Траектория. Путь. Прямолинейное равномерное движение. Скорость равномерного прямолинейного движения. Методы измерения расстояния, времени и скорости. Неравномерное движение. Средняя скорость. Ускорение. Равноускоренное движение. Свободное падение тел. Графики зависимости пути и скорости от времени. Явление инерции. Взаимодействие тел. Масса тела. Плотность вещества. Методы измерения массы и плотности.

4. Силы вокруг нас.

Сила. Сила тяжести. Правило сложения сил. Равнодействующая сила. Сила упругости. Закон Гука. Методы измерения силы. Динамометр. Вес тела. Невесомость. Сила трения. Трение в природе и технике.

5. Давление твердых тел, жидкостей и газов.

Давление твердых тел. Способы увеличения и уменьшения давления. Давление в жидкости и газе. Закон Паскаля. Расчет давления жидкости на дно и стенки сосуда. Сообщающиеся сосуды. Использование давления в технических устройствах. Гидравлические машины.

6. Атмосфера и атмосферное давление.

Вес воздуха. Атмосферное давление. Методы измерения давления. Опыт Торричелли. Приборы для измерения давления.

7. Закон Архимеда. Плавание тел.

Действие жидкости и газа на погруженное в них тело. Закон Архимеда. Условие плавания тел. Воздухоплавание.

8. Работа, мощность, энергия.

Работа. Мощность. Энергия. Потенциальная энергия взаимодействующих тел. Кинетическая энергия. Закон сохранения механической энергии. Источники энергии. Невозможность создания вечного двигателя.

9. Простые механизмы. «Золотое правило» механики.

Простые механизмы. Наклонная плоскость. Рычаг. Момент силы. Условия равновесия рычага. Блок и система блоков. «Золотое правило» механики. Коэффициент полезного действия.

Повторение.

3. Тематическое планирование учебного предмета «Физика». 7 класс

Тема	Количество
	часов
Физика и мир, в котором мы живём.	7
Строение вещества.	6
Движение, взаимодействие, масса.	10
Силы вокруг нас.	9
Давление твердых тел, жидкостей и газов.	10
Атмосфера и атмосферное давление.	4
Закон Архимеда. Плавание тел.	6
Работа, мощность, энергия.	6
Простые механизмы. «Золотое правило» механики.	7
Повторение.	4
Итого	69

Физика, 8 класс

1. Планируемые результаты освоения учебного предмета «Физика». 8 класс Личностные:

- сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убеждённость в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общественной культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения;
- формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов;
- формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира;
- формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности;
- формирование ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах;

Метапредметные:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих лействий:
- умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять

- основное содержание прочитанного текста, находить в нём ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приёмов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию, находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формулировать, аргументировать и отстаивать своё мнение;
- формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ

 – компетенции).

Предметные:

Ученик научится:

- понимать смысл понятий: тепловое движение, теплопередача, теплопроводность, конвекция, излучение, агрегатное состояние, фазовый переход, электрический заряд, электрическое поле, проводник и диэлектрик, химический элемент, атом и атомное ядро, протон, нейтрон, ядерные реакции синтеза и деления, электрическая сила, силовые линии электрического поля, ион, электрическая цепь и схема, точечный источник света, поле зрения, аккомодация, зеркало, тень, затмение, оптическая ось, фокус, оптический центр, близорукость и дальнозоркость, магнитное поле, магнитные силовые линии, электромагнитное поле, электромагнитные волны, постоянный магнит, магнитный полюс;
- смысл физических величин: внутренняя энергия, количество теплоты, удельная теплоемкость вещества, удельная теплота сгорания топлива, удельная теплота парообразования, удельная теплота плавления, температура, температура кипения, температура плавления, влажность, электрический заряд, сила тока, напряжение, сопротивление, удельное сопротивление, работа и мощность тока, массовое число, энергия связи, углы падения, отражения, преломления, фокусное расстояние, оптическая сила;
- смысл физических законов: закон сохранения энергии в тепловых процессах, закон сохранения электрического заряда, закон Ома для участка электрической цепи, закон Джоуля-Ленца, закон Ампера, закон прямолинейного распространения света, закон отражения и преломления света.

Ученик получит возможность научиться:

• описывать и объяснять физические явления: теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, электромагнитную индукцию, отражение, преломление и дисперсию света;

- использовать физические приборы и измерительные инструменты для измерения физических величин: температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока;
- представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света;
- выражать результаты измерений и расчетов в единицах Международной системы;
- приводить примеры практического использования физических знаний о тепловых, электромагнитных явлениях;
- решать задачи на применение изученных физических законов.

2. Содержание учебного предмета «Физика». 8 класс

1. Внутренняя энергия.

Тепловое движение. Температура. Связь температуры со средней скоростью движения его молекул. Внутренняя энергия. Два способа изменения внутренней энергии: теплопередача и работа. Виды теплопередачи. Количество теплоты. Удельная теплоемкость вещества. Изменение энергии тела при совершении работы. Конвекция в жидкости. Теплопередача путем излучения. Сравнение удельных теплоемкостей различных веществ. Исследование изменения со временем температуры остывающей воды.

2. Изменения агрегатного состояния вещества.

Агрегатные состояния вещества. Плавление и отвердевание тел. Температура плавления. Удельная теплота плавления. Испарение и конденсация. Насыщенный пар. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования. Относительная влажность воздуха и ее измерение. Объяснение изменения агрегатных состояний на основе молекулярно-кинетических представлений.

3. Тепловые двигатели.

Энергия топлива. Принципы работы тепловых двигателей. Двигатель внутреннего сгорания. Паровая турбина. Реактивный двигатель. Холодильные машины. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

4.Электрические явления.

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Электроскоп. Проводники и непроводники (диэлектрики). Делимость электрического заряда. Электрон. Строение атомов. Закон сохранения электрического заряда. Электрическое поле.

Электрический ток. Гальванические элементы и аккумуляторы. Электрический ток в различных средах. Действия электрического тока. Направление электрического тока. Электрическая цепь. Сила тока. Амперметр. Электрическое напряжение. Вольтметр. Электрическое сопротивление. Закон Ома для участка электрической цепи. Правила безопасности при работе с источниками электрического тока. Расчет сопротивления проводника. Удельное электрическое сопротивление. Реостаты. Последовательное и параллельное соединения проводников. Работа и мощность тока. Количество теплоты, выделяемое проводником с током. Закон Джоуля — Ленца. Лампа накаливания. Электрические нагревательные приборы. Короткое замыкание. Плавкие предохранители.

5. Магнитное поле.

Магнитное поле тока. Электромагниты и их применение. Постоянные магниты. Магнитное поле Земли. Магнитные бури. Действие магнитного поля на проводник с током. Электродвигатель.

6. Основы кинематики.

Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равнопеременное движение. Мгновенная скорость. Ускорение. Графики зависимости скорости и перемещения от времени при прямолинейном равномерном и равнопеременном движениях.

7.Основы динамики.

Относительность механического движения. Инерция. Инерциальная система отсчета. Материальная точка. Первый, второй и третий законы Ньютона. Свободное падение. Невесомость. Импульс силы и импульс тела. Закон сохранения импульса. Реактивное движение.

Повторение.

3. Тематическое планирование учебного предмета «Физика». 8 класс

Тема	Количество
	часов
Внутренняя энергия.	10
Изменения агрегатных состояний вещества.	8
Тепловые двигатели.	7
Электрические явления.	20
Магнитное поле.	6
Основы кинематики.	8
Основы динамики.	8
Повторение.	2
Итого	69

Физика. 9 класс

1. Планируемые результаты освоения учебного предмета «Физика». 9 класс

Личностные:

- сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные:

• овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки

результатов своей деятельности, умениями предвидеть возможные результаты своих действий;

- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметные:

Ученик научится:

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное движение, свободное падение тел, невесомость, равномерное движение по окружности, инерция, взаимодействие тел, передача давления твёрдыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твёрдых тел, колебательное движение, резонанс, волновое движение;
- описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД

простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость её распространения): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

- распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объёма тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;
- различать основные признаки моделей строения газов, жидкостей и твёрдых тел;
- решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.
- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током, прямолинейное распространение света, отражение и преломление света, дисперсия света;
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы, формулы расчёта электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа

условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Ученик получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, закон Архимеда и др.);
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.
- приводить примеры практического использования физических знаний о тепловых явлениях;
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.
- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о электромагнитных явлениях;
- приёмам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

2. Содержание учебного предмета «Физика». 9 класс

1. Движение тел вблизи поверхности Земли и гравитация.

Движение тела, брошенного вертикально вверх, горизонтально, под углом к горизонту. Равномерное движение по окружности. Центростремительное ускорение. Период и частота обращения. Закон всемирного тяготения. Движение искусственных спутников Земли. Геоцентрическая и гелиоцентрическая системы мира.

2. Механические колебания и волны.

Механические колебания. Период, частота и амплитуда колебаний. Период колебаний математического и пружинного маятников. Резонанс. Механические волны. Длина волны. Использование колебаний в технике.

3. Звук.

Звуковые волны, источники звука. Характеристики звука. Отражение звука. Резонанс. Ультразвук и инфразвук.

4. Электромагнитные колебания.

Индукция магнитного поля. Однородное магнитное поле. Магнитный поток. Электромагнитная индукция. Переменный электрический ток. Электромагнитное поле. Передача электрической энергии. Трансформатор. Электромагнитные колебания. Электромагнитные волны.

5. Геометрическая оптика.

Свет. Источники света. Распространение света в однородной среде. Отражение света. Плоское зеркало. Преломление света. Линзы. Изображение, даваемое линзой. Глаз как оптическая система. Оптические приборы.

6. Электромагнитная природа света.

Скорость света. Методы измерения скорости света. Разложение белого света на цвета. Дисперсия цвета. Интерференция волн. Интерференция и волновые свойства цвета. Дифракция волн. Дифракция света. Поперечность световых волн. Электромагнитная природа света.

7. Квантовые явления.

Опыты, подтверждающие сложное строение атома. Излучение и спектры. Квантовая гипотеза Планка. Атом Бора. Радиоактивность. Состав атомного ядра. Ядерные силы и ядерные реакции. Деление и синтез ядер. Атомная энергетика.

8. Строение и эволюция Вселенной.

Структура Вселенной. Физическая природа Солнца и звёзд. Строение Солнечной системы. Спектр электромагнитного излучения. Рождение и эволюция Вселенной. Современные методы исследования Вселенной.

Повторение.

3. Тематическое планирование учебного предмета «Физика». 9 класс

Тема	Количество
	часов
Движение тел вблизи поверхности Земли и гравитация.	20
Механические колебания и волны.	9
Звук.	5
Электромагнитные колебания.	12
Геометрическая оптика.	16
Электромагнитная природа света.	9
Квантовые явления.	14
Строение и эволюция Вселенной.	6
Повторение.	5
Итого	96